If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5=9x^2
We move all terms to the left:
5-(9x^2)=0
a = -9; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-9)·5
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*-9}=\frac{0-6\sqrt{5}}{-18} =-\frac{6\sqrt{5}}{-18} =-\frac{\sqrt{5}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*-9}=\frac{0+6\sqrt{5}}{-18} =\frac{6\sqrt{5}}{-18} =\frac{\sqrt{5}}{-3} $
| 4=1-p-5 | | -7-8a-3=14 | | -5=-2+8x+5 | | 0=-5p+7p | | 4x7=63 | | k-5-8=-10 | | -6=3p+4+7p | | 6-2p-p=6 | | 0.4b+13=0.4b-8.6 | | 5n+8=14 | | -36x-((4(x+1)))*4x=-3 | | 3((2x+2)=-4(3x-1) | | S−1.8x=4.6 | | 9c-25=22 | | 522=w-(-367) | | 3x-+4=x+5 | | g+1/6=1 | | 2+(2s)+(s+3)=55 | | 7c/4=7 | | –4.3=–2(c−8.75) | | -27c=837 | | f+108=-510 | | 240=4(3d+3)+6(3d-2) | | 1/3-6y=12y | | z+570=234 | | (3-2r)/5=7 | | h-9=24+12h | | u+8=u/2 | | 2w+21=63 | | 4+2p=1 | | 1/4(t-9)-3t=6 | | 2w+20=4 |